
Building Java Programs
Chapter 11

Java Collections Framework

Copyright (c) Pearson 2013.
All rights reserved.

2

Java collections framework

3

Exercise
• Write a program that counts the number of unique words in a

large text file (say, Moby Dick or the King James Bible).

–  Store the words in a collection and report the # of unique words.

–  Once you've created this collection, allow the user to search it to
see whether various words appear in the text file.

• What collection is appropriate for this problem?

4

Empirical analysis
Running a program and measuring its performance

 System.currentTimeMillis()
–  Returns an integer representing the number of milliseconds that

have passed since 12:00am, January 1, 1970.
• The result is returned as a value of type long, which is like int but

with a larger numeric range (64 bits vs. 32).

–  Can be called twice to see how many milliseconds have elapsed
between two points in a program.

• How much time does it take to store Moby Dick into a List?

5

Sets (11.2)
•  set: A collection of unique values (no duplicates allowed)

that can perform the following operations efficiently:
–  add, remove, search (contains)

–  We don't think of a set as having indexes; we just
add things to the set in general and don't worry about order

set.contains("to") true

set

"the" "of"

"from"
"to"

"she"
"you"

"him" "why"

"in"

"down"
"by"

"if"

set.contains("be") false

6

Set implementation
•  in Java, sets are represented by Set interface in java.util

• Set is implemented by HashSet and TreeSet classes

–  HashSet: implemented using a "hash table" array;
very fast: O(1) for all operations
elements are stored in unpredictable order

–  TreeSet: implemented using a "binary search tree";
pretty fast: O(log N) for all operations
elements are stored in sorted order

–  LinkedHashSet: O(1) but stores in order of insertion

7

Set methods
 List<String> list = new ArrayList<String>();
 ...
 Set<Integer> set = new TreeSet<Integer>(); // empty
 Set<String> set2 = new HashSet<String>(list);

–  can construct an empty set, or one based on a given collection

add(value) adds the given value to the set
contains(value) returns true if the given value is found in this set
remove(value) removes the given value from the set
clear() removes all elements of the set
size() returns the number of elements in list
isEmpty() returns true if the set's size is 0
toString() returns a string such as "[3, 42, -7, 15]"

8

Set operations

addAll(collection) adds all elements from the given collection to this set

containsAll(coll) returns true if this set contains every element from given set

equals(set) returns true if given other set contains the same elements

iterator() returns an object used to examine set's contents (seen later)

removeAll(coll) removes all elements in the given collection from this set

retainAll(coll) removes elements not found in given collection from this set

toArray() returns an array of the elements in this set

addAll retainAll removeAll

9

Sets and ordering
• HashSet : elements are stored in an unpredictable order

Set<String> names = new HashSet<String>();
names.add("Jake");
names.add("Robert");
names.add("Marisa");
names.add("Kasey");
System.out.println(names);
// [Kasey, Robert, Jake, Marisa]

• TreeSet : elements are stored in their "natural" sorted order

Set<String> names = new TreeSet<String>();
...
// [Jake, Kasey, Marisa, Robert]

• LinkedHashSet : elements stored in order of insertion

Set<String> names = new LinkedHashSet<String>();
...
// [Jake, Robert, Marisa, Kasey]

10

The "for each" loop (7.1)
 for (type name : collection) {
 statements;
 }

•  Provides a clean syntax for looping over the elements of a Set,
List, array, or other collection

Set<Double> grades = new HashSet<Double>();
...

for (double grade : grades) {
 System.out.println("Student's grade: " + grade);
}

–  needed because sets have no indexes; can't get element i

11

Maps vs. sets
• A set is like a map from elements to boolean values.

–  Set: Is "Marty" found in the set? (true/false)

–  Map: What is "Marty" 's phone number?

Set
"Marty" true

false

Map
"Marty" "206-685-2181"

12

keySet and values
• keySet method returns a Set of all keys in the map

–  can loop over the keys in a foreach loop
–  can get each key's associated value by calling get on the map

Map<String, Integer> ages = new TreeMap<String, Integer>();
ages.put("Marty", 19);
ages.put("Geneva", 2); // ages.keySet() returns Set<String>
ages.put("Vicki", 57);
for (String name : ages.keySet()) { // Geneva -> 2
 int age = ages.get(age); // Marty -> 19
 System.out.println(name + " -> " + age); // Vicki -> 57
}

• values method returns a collection of all values in the map
–  can loop over the values in a foreach loop
–  no easy way to get from a value to its associated key(s)

13

Problem: opposite mapping
•  It is legal to have a map of sets, a list of lists, etc.

• Suppose we want to keep track of each TA's GPA by name.

Map<String, Double> taGpa = new HashMap<String, Double>();
taGpa.put("Jared", 3.6);
taGpa.put("Alyssa", 4.0);
taGpa.put("Steve", 2.9);
taGpa.put("Stef", 3.6);
taGpa.put("Rob", 2.9);
...
System.out.println("Jared's GPA is " +
 taGpa.get("Jared")); // 3.6

• This doesn't let us easily ask which TAs got a given GPA.
–  How would we structure a map for that?

14

Reversing a map
• We can reverse the mapping to be from GPAs to names.

Map<Double, String> taGpa = new HashMap<Double, String>();
taGpa.put(3.6, "Jared");
taGpa.put(4.0, "Alyssa");
taGpa.put(2.9, "Steve");
taGpa.put(3.6, "Stef");
taGpa.put(2.9, "Rob");
...
System.out.println("Who got a 3.6? " +
 taGpa.get(3.6)); // ???

• What's wrong with this solution?
–  More than one TA can have the same GPA.
–  The map will store only the last mapping we add.

15

Proper map reversal
• Really each GPA maps to a collection of people.

Map<Double, Set<String>> taGpa =
 new HashMap<Double, Set<String>>();
taGpa.put(3.6, new TreeSet<String>());
taGpa.get(3.6).add("Jared");
taGpa.put(4.0, new TreeSet<String>());
taGpa.get(4.0).add("Alyssa");
taGpa.put(2.9, new TreeSet<String>());
taGpa.get(2.9).add("Steve");
taGpa.get(3.6).add("Stef");
taGpa.get(2.9).add("Rob");
...
System.out.println("Who got a 3.6? " +
 taGpa.get(3.6)); // [Jared, Stef]

–  must be careful to initialize the set for a given GPA before adding

16

Exercises
• Modify the word count program to print every word that

appeared in the book at least 1000 times, in sorted order from
least to most occurrences.

• Write a program that reads a list of TA names and quarters'
experience, then prints the quarters in increasing order of how
many TAs have that much experience, along with their names.

Allison 5 1 qtr: [Brian]
Alyssa 8 2 qtr: ...
Brian 1 5 qtr: [Allison, Kasey]
Kasey 5
...

Iterators

reading: 11.1; 15.3; 16.5

18

Examining sets and maps
•  elements of Java Sets and Maps can't be accessed by index

–  must use a "foreach" loop:

 Set<Integer> scores = new HashSet<Integer>();
 for (int score : scores) {
 System.out.println("The score is " + score);
 }

–  Problem: foreach is read-only; cannot modify set while looping

 for (int score : scores) {
 if (score < 60) {
 // throws a ConcurrentModificationException
 scores.remove(score);
 }
 }

19

Iterators (11.1)
•  iterator: An object that allows a client to traverse the

elements of any collection.
–  Remembers a position, and lets you:

• get the element at that position
• advance to the next position
• remove the element at that position

index 0 1 2 3 4 5 6 7 8 9
value 3 8 9 7 5 12 0 0 0 0
size 6

list

current element: 9
current index: 2 iterator

set
"the"

"to"

"from"

"we"

current element: "from"
next element: "the" iterator

20

Iterator methods

• Iterator interface in java.util
–  every collection has an iterator() method that returns an

iterator over its elements

 Set<String> set = new HashSet<String>();
 ...
 Iterator<String> itr = set.iterator();
 ...

hasNext() returns true if there are more elements to examine
next() returns the next element from the collection (throws a

NoSuchElementException if there are none left to examine)

remove() removes the last value returned by next() (throws an
IllegalStateException if you haven't called next() yet)

21

Iterator example
 Set<Integer> scores = new TreeSet<Integer>();
 scores.add(94);
 scores.add(38); // Kim
 scores.add(87);
 scores.add(43); // Marty
 scores.add(72);
 ...

 Iterator<Integer> itr = scores.iterator();
 while (itr.hasNext()) {
 int score = itr.next();

 System.out.println("The score is " + score);

 // eliminate any failing grades
 if (score < 60) {
 itr.remove();
 }
 }
 System.out.println(scores); // [72, 87, 94]

22

Iterator example 2
 Map<String, Integer> scores = new TreeMap<String, Integer>();
 scores.put("Kim", 38);
 scores.put("Lisa", 94);
 scores.put("Roy", 87);
 scores.put("Marty", 43);
 scores.put("Marisa", 72);
 ...

 Iterator<String> itr = scores.keySet().iterator();
 while (itr.hasNext()) {
 String name = itr.next();
 int score = scores.get(name);
 System.out.println(name + " got " + score);

 // eliminate any failing students
 if (score < 60) {
 itr.remove(); // removes name and score
 }
 }
 System.out.println(scores); // {Lisa=94, Marisa=72, Roy=87}

23

Exercise
• Modify the Book Search program from last lecture to eliminate

any words that are plural or all-uppercase from the collection.

• Modify the TA quarters experience program so that it
eliminates any TAs with 3 quarters or fewer of experience.

24

Exercise
• Write a program to count the occurrences of each word in a

large text file (e.g. Moby Dick or the King James Bible).

–  Allow the user to type a word and report how many times that
word appeared in the book.

–  Report all words that appeared in the book at least 500 times, in
alphabetical order.

• How will we store the data to solve this problem?

25

The Map ADT
• map: Holds a set of unique keys and a collection of values,

where each key is associated with one value.
–  a.k.a. "dictionary", "associative array", "hash"

•  basic map operations:
–  put(key, value): Adds a

mapping from a key to
a value.

–  get(key): Retrieves the
value mapped to the key.

–  remove(key): Removes
the given key and its
mapped value.

myMap.get("Juliet") returns "Capulet"

26

Maps and tallying
•  a map can be thought of as generalization of a tallying array

–  the "index" (key) doesn't have to be an int

•  recall previous tallying examples from CSE 142
–  count digits: 22092310907

 // (M)cCain, (O)bama, (I)ndependent
–  count votes: "MOOOOOOMMMMMOOOOOOMOMMIMOMMIMOMMIO"

index 0 1 2 3 4 5 6 7 8 9
value 3 1 3 0 0 0 0 1 0 2

key "M" "O" "I"
value 16 14 3

"M"

"O"

"I" 16

3

14

keys values

27

Map implementation
•  in Java, maps are represented by Map interface in java.util

• Map is implemented by the HashMap and TreeMap classes

–  HashMap: implemented using an array called a "hash table";
extremely fast: O(1) ; keys are stored in unpredictable order

–  TreeMap: implemented as a linked "binary tree" structure;
very fast: O(log N) ; keys are stored in sorted order

–  A map requires 2 type parameters: one for keys, one for values.

// maps from String keys to Integer values
Map<String, Integer> votes = new HashMap<String, Integer>();

28

Map methods
put(key, value) adds a mapping from the given key to the given value;

if the key already exists, replaces its value with the given one

get(key) returns the value mapped to the given key (null if not found)

containsKey(key
)

returns true if the map contains a mapping for the given key

remove(key) removes any existing mapping for the given key

clear() removes all key/value pairs from the map

size() returns the number of key/value pairs in the map

isEmpty() returns true if the map's size is 0

toString() returns a string such as "{a=90, d=60, c=70}"
keySet() returns a set of all keys in the map

values() returns a collection of all values in the map

putAll(map) adds all key/value pairs from the given map to this map

equals(map) returns true if given map has the same mappings as this one

29

Using maps
• A map allows you to get from one half of a pair to the other.

–  Remembers one piece of information about every index (key).

–  Later, we can supply only the key and get back the related value:
 Allows us to ask: What is Marty's phone number?

Map
get("Marty")

"206-685-2181"

Map

// key value
put("Marty", "206-685-2181")

30

Exercise solution
// read file into a map of [word --> number of occurrences]
Map<String, Integer> wordCount = new HashMap<String, Integer>();
Scanner input = new Scanner(new File("mobydick.txt"));
while (input.hasNext()) {
 String word = input.next();
 if (wordCount.containsKey(word)) {
 // seen this word before; increase count by 1
 int count = wordCount.get(word);
 wordCount.put(word, count + 1);
 } else {
 // never seen this word before
 wordCount.put(word, 1);
 }
}

Scanner console = new Scanner(System.in);
System.out.print("Word to search for? ");
String word = console.next();
System.out.println("appears " + wordCount.get(word) + " times.");

31

keySet and values
• keySet method returns a set of all keys in the map

–  can loop over the keys in a foreach loop
–  can get each key's associated value by calling get on the map

Map<String, Integer> ages = new HashMap<String, Integer>();
ages.put("Marty", 19);
ages.put("Geneva", 2);
ages.put("Vicki", 57);
for (String name : ages.keySet()) { // Geneva -> 2
 int age = ages.get(age); // Marty -> 19
 System.out.println(name + " -> " + age); // Vicki -> 57
}

• values method returns a collection of all values in the map
–  can loop over the values in a foreach loop
–  there is no easy way to get from a value to its associated key(s)

Languages and Grammars

33

Languages and grammars
•  (formal) language: A set of words or symbols.

• grammar: A description of a language that describes which
sequences of symbols are allowed in that language.
–  describes language syntax (rules) but not semantics (meaning)
–  can be used to generate strings from a language, or to determine

whether a given string belongs to a given language

34

Backus-Naur (BNF)
• Backus-Naur Form (BNF): A syntax for describing language

grammars in terms of transformation rules, of the form:

<symbol> ::= <expression> | <expression> ... | <expression>

–  terminal: A fundamental symbol of the language.
–  non-terminal: A high-level symbol describing language syntax,

which can be transformed into other non-terminal or terminal
symbol(s) based on the rules of the grammar.

–  developed by two Turing-award-winning computer scientists in 1960 to
describe their new ALGOL programming language

35

An example BNF grammar
<s>::=<n> <v>
<n>::=Marty | Victoria | Stuart | Jessica
<v>::=cried | slept | belched

• Some sentences that could be generated from this grammar:

Marty slept
Jessica belched
Stuart cried

36

BNF grammar version 2
<s>::=<np> <v>
<np>::=<pn> | <dp> <n>
<pn>::=Marty | Victoria | Stuart | Jessica
<dp>::=a | the
<n>::=ball | hamster | carrot | computer
<v>::=cried | slept | belched

• Some sentences that could be generated from this grammar:

the carrot cried
Jessica belched
a computer slept

37

BNF grammar version 3
<s>::=<np> <v>
<np>::=<pn> | <dp> <adj> <n>
<pn>::=Marty | Victoria | Stuart | Jessica
<dp>::=a | the
<adj>::=silly | invisible | loud | romantic
<n>::=ball | hamster | carrot | computer
<v>::=cried | slept | belched

• Some sentences that could be generated from this grammar:

the invisible carrot cried
Jessica belched
a computer slept
a romantic ball belched

38

Grammars and recursion
<s>::=<np> <v>
<np>::=<pn> | <dp> <adjp> <n>
<pn>::=Marty | Victoria | Stuart | Jessica
<dp>::=a | the
<adjp>::=<adj> <adjp> | <adj>
<adj>::=silly | invisible | loud | romantic
<n>::=ball | hamster | carrot | computer
<v>::=cried | slept | belched

• Grammar rules can be defined recursively, so that the
expansion of a symbol can contain that same symbol.
–  There must also be expressions that expand the symbol into

something non-recursive, so that the recursion eventually ends.

39

Grammar, final version
<s>::=<np> <vp>
<np>::=<dp> <adjp> <n>|<pn>
<dp>::=the|a
<adjp>::=<adj>|<adj> <adjp>
<adj>::=big|fat|green|wonderful|faulty|subliminal
<n>::=dog|cat|man|university|father|mother|child
<pn>::=John|Jane|Sally|Spot|Fred|Elmo
<vp>::=<tv> <np>|<iv>
<tv>::=hit|honored|kissed|helped
<iv>::=died|collapsed|laughed|wept

• Could this grammar generate the following sentences?
Fred honored the green wonderful child

big Jane wept the fat man fat

• Generate a random sentence using this grammar.

40

Sentence generation
<s>

<np> <vp>

<pn>

Fred

<tv> <np>

honored

<dp> <adjp> <n>

the

<adjp> <adj>

child green

<adj>

wonderful

