Building Java Programs
Chapter 8

Classes

Copyright (c) Pearson 2013.
All rights reserved.

A programming problem

e Given a file of cities' (x, y) coordinates, =[P
which begins with the number of cities: —
6 1042 (80, 60)
38 28 (74, 98) {150, 91)
10 72 o
74 98
5 136
D ——
150 91 0,0

e Write a program to draw the cities on a brawingPanel, then drop a
"bomb" that turns all cities red that are within a given radius:

Blast site x? 100
Blast site y? 100
Blast radius? 7
Kaboom!

A bad solution

Scanner 1input
int cityCount
int[] xCoords
int[] yCoords

for (int 1 =
xCoords|[1i
yCoords|[i

0;
]
]

new Scanner (new File("cities.txt"))
input.nextInt () ;

new int[cityCount];

new int[cityCount];

i < cityCount; 1i++) {

= input.nextInt() ; // read each city
= input.nextInt() ;

— parallel arrays: 2+ arrays with related data at same indexes.
e Considered poor style.

Observations

e The data in this problem is a set of points. =lolx|

e It would be better stored as Point objects. (50,20

{80, 60)

— A Point would store a city's x/y data. {10/

(74, 98) {150, 91)

{5,186)

— We could compare distances between Points
to see whether the bomb hit a given city.

(0, 0) |

— Each pPoint would know how to draw itself.

— The overall program would be shorter and cleaner.

Clients of objects

e client program: A program that uses objects.
— Example: Bomb is a client of DrawingPanel and Graphics.

DrawingPanel . java (class)

v

Bomb . java (client program) «
public class Bomb {
main (String[] args) {
new DrawingPanel(...)
new DrawingPanel (...)

public class DrawingPanel {

Classes and objects

e class: A program entity that represents either:
1. A program / module, or
2. A template for a new type of objects.

— The DrawingPanel class is a template for creating
DrawingPanel objects.

e object: An entity that combines state and behavior.

— object-oriented programming (OOP): Programs that perform
their behavior as interactions between objects.

Blueprint analogy

iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

creates
iPod #1 iPod #2 iPod #3
state: state: state:
song = "1,000,000 Miles" song = "Letting You" song = "Discipline"
volume = 17 volume =9 volume = 24
battery life = 2.5 hrs battery life = 3.41 hrs battery life = 1.8 hrs

behavior:
power on/off &

change station/song
change volume
choose random song |

behavior:
power on/off &

change station/song
change volume
choose random song |

behavior:
power on/off &

change station/song
change volume
choose random song |

Abstraction

e abstraction: A distancing between ideas and details.
— We can use objects without knowing how they work.

e abstraction in an iPod:
— You understand its external behavior (buttons, screen).
— You don't understand its inner details, and you don't need to.

-

it Resistor
\ == Here

e In the following slides, we will implement a Point class as a
way of learning about defining classes.

— We will define a type of objects named Point.

— Each point object will contain x/y data called fields.

— Each pPoint object will contain behavior called methods.
— Client programs will use the Point objects.

Point objects (desired)

Point pl = new Point (5, -2);
)

Point pZ2 = new Point (

; // origin, (0, 0)

e Data in each Point object:

Field name Description
X the point's x-coordinate
v the point's y-coordinate

e Methods in each Point object:

Method name

Description

setLocation (X, Y)

sets the point's x and y to the given values

translate (dx, dy)

adjusts the point's x and y by the given amounts

distance (pP)

how far away the point is from point p

draw (@)

displays the point on a drawing panel

Point class as blueprint

Point class

state:

int x, vy

behavior:

setLocation(int x, 1int vy)
translate (int dx, int dy)
distance (Point p)

draw (Graphics q)

Point object #1

state:
x = 5, y = =2

behavior:

setLocation (int x, int vy)
translate (int dx, int dy)
distance (Point p)

draw (Graphics q)

Point object #2

state:
x = -245, y = 1897

behavior:

setLocation (int x, int vy)
translate (int dx, int dy)
distance (Point p)

draw (Graphics q)

Point object #3

state:
x = 18, y = 42

behavior:

setLocation (int x, int vy)
translate (int dx, int dy)
distance (Point p)

draw (Graphics q)

— The class (blueprint) will describe how to create objects.
— Each object will contain its own data and methods.

11

Object state: Fields

Point class, version 1

public class Point {
int x;
int y;

}

— Save this code into a file named Point. java.

e The above code creates a new type named Point.

— Each pPoint object contains two pieces of data:
e an int named x, and
ean int named vy.

- Point objects do not contain any behavior (yet).

13

e field: A variable inside an object that is part of its state.
— Each object has its own copy of each field.

e Declaration syntax:

type name;

— Example:

public class Student ({
String name; // each Student object has a
double gpa; // name and gpa field

14

Accessing fields

e Other classes can access/modify an object's fields.

— access: variable. field
— modify: variable.field = value;
e Example:
Point pl = new Point();
Point p2 = new Point();
System.out.println ("the x-coord is " + pl.x); // access

p2.y = 13; // modify

15

A class and its client

e Point.java is not, by itself, a runnable program.
— A class can be used by client programs.

Point.java (class of objects)

PointMain.java (client program - | public class Point |
public class PointMain { int x;:
main (String args) { int y;
Point pl = new Point(); }
pl.x = 7; AN
pl.y = 2; \\\\\\x
Point p2 = new Point(); X / Y% 2
p2.x = 4;
pP2.y = 3; \
} x| 4 |y| 3
}

16

PointMain client example

public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point pl = new Point();
pl.y = 2;
Point p2 = new Point();
p2.x = 4;
System.out.println(pl.x + ", " + pl.y): // 0, 2
// move p2 and then print it
pP2.x += 2;
p2.y++;
System.out.println(p2.x + ", " + p2.y); // 6, 1

o Exercise: Modify the Bomb program to use Point objects.

17

Arrays of objects

e null : A value that does not refer to any object.
— The elements of an array of objects are initialized to null.

String[] words = new Stringl[5];
DrawingPanel [] windows = new DrawingPanel [3];

index 0 1 2 3 4
words (—— yaue [natl | natl | nutl] nuil | nu

index 0 1 2

value | null | null | null

windows

18

Things you can do w/ null

e store null in a variable or an array element
String s = null;
words[2] = null;

e print @ null reference
System.out.println(s); // null

e ask whether a variable or array element is null
1f (words[2] == null) {

e pass null as a parameter to a method
System.out.println (null); // null

e return null from a method (often to indicate failure)

return null;

19

Null pointer exception

e dereference: To access data or methods of an object with the
dot notation, such as s.length () .

— It is illegal to dereference null (causes an exception).
- null is not any object, so it has no methods or data.

String[] words = new String[5];
System.out.println("word 1is: " + words[0]);
words[0] = words[0].toUpperCase() // ERROR

index 0 1 2 3 A4
Output: value | null' | null’| null | null | null

word 1s: null

Exception 1n thread "main"
jJava.lang.NullPointerException

at Example.main (Example.java:8)
20

Looking before you leap

e You can check for null before calling an object's methods.

String[] words = new String[5];
words[0] = "hello";
words[2] = "goodbye"; // words[1l], [3], [4] are null

for (int i = 0; 1 < words.length; i++) {

if (words[i] '= null) {
words[1] = words[i].toUpperCase()
}
}
index 0 1 2 3 4

words (_— value | "HELLO" | null | "GOODBYE" | null | null

21

Two-phase initialization

1) initialize the array itself (each element is initially nul1l)
2) initialize each element of the array to be a new object

String[] words = new String[4]; // phase 1
for (int 1 = 0; 1 < words.length; 1++) {
coords[i] = "word" + i; // phase 2
}
index 0 1 2 3

words
value | "wordo" "wordl" "word2" "word3"

22

Bomb answer 1

import java.awt.*;
import java.io.*;
import java.util.*;

// Displays a set of cities and simulates dropping a "bomb" on them.
public class Bomb {
public static void main(String[] args) throws FileNotFoundException ({
DrawingPanel panel = new DrawingPanel (200, 200);
Graphics g = panel.getGraphics();

Scanner input = new Scanner (new File("cities.txt"));
Point[] cities = readCities (input, g);

// drop the "bomb"

Scanner console = new Scanner (System.in);
Point bomb = new Point () ;
System.out.print ("Blast site x? ");
bomb.x = console.nextInt () ;

System.out.print ("Blast site y? ");
bomb.y = console.nextInt();
System.out.print ("Blast radius? ");
int radius = console.nextInt();
boom (bomb, radius, cities, qg);

23

Bomb answer 2

// Reads input file of cities and returns them as array of Points.
public static Point[] readCities (Scanner input, Graphics g) {
int numCities = input.nextInt(); // first line = # of cities
Point[] cities = new Point[numCities];
for (int 1 = 0; 1 < cities.length; i++) {
cities[i] = new Point();
cities[i].x = input.nextInt(); // read city x/y from file
cities[i].y = input.nextInt();
g.fillOval (cities[i] .x, cities[i].y, 3, 3);
g.drawString (" (" + cities[i].x + ", " + cities[i]l.y + ")",
cities[i].x, cities[i].y):
}

return cities;

}

// Simulates dropping a bomb at the given location on the given cities.
public static void boom (Point bomb, int radius, Point[] cities, Graphics g) {
g.setColor (Color.RED);
g.drawOval (bomb.x - radius, bomb.y - radius, 2 * radius, 2 * radius);
for (int i = 0; 1 < cities.length; i++) {
int dx = cities[i].x - bomb.x;
int dy = cities[i].y - bomb.y;
double distance = Math.sqrt(dx * dx + dy * dy);
if (distance <= radius) {
g.fillOval (cities[i] .x, cities[i].y, 3, 3);
g.drawString (" (" + cities[i].x + ", " + cities[i]l.y + ")",
cities[i] .x, cities[i].y):
}
}

System.out.println ("Kaboom!") ;

24

Object behavior: Methods

Client code redundancy

e Our client program wants to draw Point objects:

// draw each city

g.fillOval(cities[1].x, cities[i].y, 3, 3):

g.drawString (" (" + cities[1].x + ", " 4+ cities[i1].y + ™))",
cities[i].x, cities[i].Vy);

e To draw them in other places, the code must be repeated.
— We can remove this redundancy using a method.

26

Eliminating redundancy, v1

e We can eliminate the redundancy with a static method:

// Draws the given point on the DrawingPanel.

public static void draw(Point p, Graphics g) {
g.fillOval(p.x, p.vy, 3, 3);
g.drawString("(" + p.x + ", " + p.y + """, p.xX, P.V);

» main would call the method as follows:

// draw each city
draw(cities[i], g);

27

Problem with static method

e We are missing a major benefit of objects: code reuse.
— Every program that draws Points would need a draw method.

e The syntax doesn't match how we're used to using objects.

draw(cities[i], g) // static (bad)

e The point of classes is to combine state and behavior.
— The draw behavior is closely related to a Point's data.
— The method belongs inside each Point object.

cities[i] .draw(qg) ; // inside object (better)
28

Instance methods

e instance method (or object method): Exists inside each
object of a class and gives behavior to each object.

public type name (parameters) |
statements;

}

— same syntax as static methods, but without static keyword

Example:

public void shout () {
System.out.println ("HELLO THERE!");

}

29

Instance method example

public class Point {
int x;
int vy;

// Draws this Point object with the given pen.
public void draw (Graphics g) ({

}
}

— The draw method no longer has a Point p parameter.

— How will the method know which point to draw?
e How will the method access that point's x/y data?

30

Point objects w/ method

e Each Point object has its own copy of the draw method, which
operates on that object's state:

pl
Point pl = new Point();
pl.x = 7;
l.y = 2;
pL.y x| 7 |y| 2
Point pZ2 = new Point(); public void draw (Graphics g) {
p2.x = 4; // this code can see pl's x and y
p2.y = 3; }
1l.dra ;
P w(g) <| 4 v 3
p2.draw(@); pz()—
public voild draw (Graphics g) {
// this code can see p2's x and y
}

31

The implicit parameter

e implicit parameter:
The object on which an instance method is called.

— During the call p1.draw (g) ;
the object referred to by p1 is the implicit parameter.

— During the call p2.draw (g) ;
the object referred to by p2 is the implicit parameter.

— The instance method can refer to that object's fields.
e We say that it executes in the context of a particular object.
- draw can refer to the x and y of the object it was called on.

32

Point class, version 2

public class Poilnt {
int x;
int vy;
// Changes the location of this Point object.
public void draw (Graphics g) {
g.fillOval(x, y, 3, 3);
g.drawString("(" + x + ", "+ y + ")", x, y);

}

— Each pPoint object contains a draw method that draws that point
at its current x/y position.

33

Kinds of methods

e accessor. A method that lets clients examine object state.
— Examples: distance, distanceFromOrigin

— often has a non-void return type

e mutator: A method that modifies an object's state.
— Examples: setLocation, translate

34

Mutator method questions

e Write a method setLocation that changes a Point's
location to the (X, y) values passed.

e Write a method translate that changes a Point's location
by a given dx, dy amount.

— Modify the Point and client code to use these methods.

35

Mutator method answers

public void setLocation(int newX, 1int newY) {
X = newx;
Yy = newy;

public void translate(int dx, 1int dy) {
X = x + dx;
y =y t dy;

}

// alternative solution that utilizes setlocation
public voild translate(int dx, int dy) {
setLocation(x + dx, vy + dy);

}

36

Accessor method questions

e Write a method distance that computes the distance
between a Point and another Point parameter.

Use the formula: \/(xz - x1)2 + (yz - y1)2

o Write a method distanceFromOrigin that returns the
distance between a Point and the origin, (0, 0).

— Modify the client code to use these methods.

37

Accessor method answers

public double distance (Poilnt other) {
int dx = x - other.x;
int dy = y - other.y;
return Math.sqgrt(dx * dx + dy * dy);

public double distanceFromOrigin() {
return Math.sqgrt(x * x + yv * vy);

}

// alternative solution that uses distance
public double distanceFromOrigin () {

Point origin = new Point();

return distance (origin);

38

Printing objects

e By default, Java doesn't know how to print objects:

Point p = new Point();
p.x = 10;
p.y = 77

System.out.println("p is " + p); // p is Point@9e8c34

// better, but cumbersome; p is (10, 7)
System.out.println("p 1s (" + p.x + ", " + p.y + ")");

// desired behavior
System.out.println("p is " + p); // p is (10, 7)

39

The toString method

tells Java how to convert an object into a String

Point pl = new Point (7, 2);
System.out.println("pl: " + pl);

// the above code is really calling the following:
System.out.println("pl: " + pl.toString())

e Every class has a toString, even if it isn't in your code.
— Default: class's name @ object's memory address (base 16)

Point@9e8c34

40

toString syntax

public String toString() {
code that returns a String representing this object;

— Method name, return, and parameters must match exactly.

— Example:

// Returns a String representing this Point.
public String toString () {
return LA (" _|_ X _|_ "’ LA} _|_ y _|_ ") ";

}

41

Object initialization:
constructors

Initializing objects

e Currently it takes 3 lines to create a Point and initialize it:

Point p = new Point();
p.x = 3
p.y = 8 // tedious

e We'd rather specify the fields' initial values at the start:

Point p = new Point (3, 8); // better!

— We are able to this with most types of objects in Java.

43

e constructor: Initializes the state of new objects.

public type (parameters) {
statements;

}

— runs when the client uses the new keyword

— no return type is specified;
it implicitly "returns" the new object being created

— If a class has no constructor, Java gives it a default constructor

with no parameters that sets all fields to O.
44

Constructor example

public class Point {
int x;
int y;

// Constructs a Point at the given x/y location.
public Point(int initialX, int initialY) {
initialX;

initialyY;

X
y

public void translate(int dx, int dy) {
X = x + dx;

y =y t dy;

45

Tracing a constructor call

e What happens when the following call is made?

Point pl = new Point (7, 2);

p1©—» X y

public Point(int i1nitialX, 1int 1nitialY) {
X = initialX;
y = initialyY;

}

public void translate(int dx, int dy) {
X += dx;
y += dy;

46

Client code, version 3

public class PointMain3 {
public static void main(String[] args) {
// create two Point objects
Point pl = new Point (5, 2);
Point p2 = new Point (4, 3);

// print each point
System.out.println("pl: (" + pl.x + ", " + pl.y + ™)");
System.out.println("p2: (" + p2.x + ", " + p2.y + "M)");

// move p2 and then print it again
p2.translate (2, 4);

System.out.println("p2: (" + p2.x + ", " + p2.y + ")");
}
}
OUTPUT:
pl: (5, 2)
pz: (4, 3)
p2: (6, 7)

47

Multiple constructors

¢ A class can have multiple constructors.
— Each one must accept a unique set of parameters.

o Exercise: Write a Point constructor with no parameters that
initializes the point to (0, 0).

// Constructs a new point at (0, 0).
public Point () {

x = 0;

y = 07

48

Common constructor bugs

1. Re-declaring fields as local variables ("shadowing"):
public Point(int initialX, 1int initialY) {
int x initialX;
int y initialY;

}

— This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain 0.

2. Accidentally giving the constructor a return type:

public void Point (int i1nitialX, 1nt initialY) {
initialX;
initialyY;

X
Y
}

— This is actually not a constructor, but a method named pPoint
49

Encapsulation

Encapsulation

o encapsulation: Hiding implementation details from clients.

— Encapsulation forces abstraction.

e separates external view (behavior) from internal view (state)
e protects the integrity of an object's data

—

$ Re3
2K

283394

RS
/ AUp0 OTRUT | .
— £Adad Measure==jm

Registor Voltage .82
Here Here

51

Private fields

A field that cannot be accessed from outside the class
private type name;

— Examples:

private int 1id;
private String name;

e Client code won't compile if it accesses private fields:

PointMain.java:1ll: x has private access in Point
System.out.println(pl.x);

A

52

Accessing private state

// A "read-only" access to the x field ("accessor")

public 1int getX () {
return Xx;

}

// Allows clients to change the x field ("mutator")
public void setX(int newX) {
X = newX;

}

— Client code will look more like this:

System.out.println (pl.getX())
pl.setX(14) ;

53

Point class, version 4

// A Point object represents an (x, y) location.
public class Point {

private int x;

private int y;

public Point (int initialX, int initialY) {
X = initialX;

y = initialY;

}

public int getX() {
return x;

}

public int getY¥ () ({
return y;
}

public double distanceFromOrigin () {
return Math.sqgrt(x * x + vy * v);

}

public void setLocation(int newX, int newY) {
X = newX;
Yy = newy;

}

public void translate(int dx, int dy) {
setLocation(x + dx, y + dy);
}

54

Benefits of encapsulation

o Abstraction between object and clients

e Protects object from unwanted access
— Example: Can't fraudulently increase an Account's balance.

A

e Can change the class implementation later (r.9)

— Example: Point could be rewritten in polar Z
coordinates (r, 6) with the same methods.

\

e Can constrain objects' state (invariants)
— Example: Only allow Accounts with non-negative balance.

— Example: Only allow Dates with a month from 1-12.
55

The this keyword

- this : Refers to the implicit parameter inside your class.
(a variable that stores the object on which a method is called)

— Refer to a field: this.field
— Call a method: this.method (parameters) ;
— One constructor this (parameters) ;

can call another:

56

Variable shadowing

e shadowing: 2 variables with same name in same scope.
— Normally illegal, except when one variable is a field.

public class Point {
private int x;
private 1int y;

// this is legal
public voild setLocation(int x, 1nt y) {

— In most of the class, x and v refer to the fields.

— In setLocation, x and y refer to the method's parameters.
57

Fixing shadowing

public class Point {
private 1int x;
private 1int y;

public voild setLocation(int x, 1int y) {
this.x = x;
this.y = y;

e Inside setLocation,
— To refer to the data field x, say this.x
— To refer to the parameter x, say x

58

Calling another constructor

public class Point {
private 1int x;
private 1nt vy;

public Point () {
this (0, 0); // calls (x, y) constructor

) \.\A

public Point(int x, int y) {
this.x X;
this.y '

}

 Avoids redundancy between constructors
* Only a constructor (not a method) can call another constructor

59

Static methods/fields

Multi-class systems

» Most large software systems consist of many classes.
— One main class runs and calls methods of the others.

e Advantages:
— code reuse
— splits up the program logic into manageable chunks

Main Class #1
main
methodl
method?

J A

Class #2 Class #3
method3 method4
methodb method6

61

Redundant program 1

// This program sees whether some interesting numbers are prime.

public class Primesl {
public static void main(String[] args) {
int[] nums = {1234517, 859501, 53, 142};
for (int 1 = 0; 1 < nums.length; i++) {
if (isPrime (nums[i])) {
System.out.println(nums[i] + " is prime");

}

}

// Returns the number of factors of the given integer.
public static int countFactors (int number) {

int count = 0;
for (int 1 = 1; i <= number; 1i++) {
if (number % i == 0) {
count++; // i is a factor of the number

}
}

return count;

}

// Returns true if the given number is prime.

public static boolean isPrime (int number) {
return countFactors (number) == 2;

}

Redundant program 2

// This program prints all prime numbers up to a maximum.

public class Primes2 {
public static void main(String[] args) {

Scanner console = new Scanner (System.in);
System.out.print ("Max number? ");
int max = console.nextInt();
for (int 1 = 2; i <= max; 1i++) {
if (isPrime(i)) {

System.out.print (i1 + " ");
} }
System.out.println();
}

// Returns true if the given number is prime.
public static boolean isPrime (int number) ({
return countFactors (number) == 2;

}
// Returns the number of factors of the given integer.
public static int countFactors (int number) {

int count = 0;
for (int i = 1; i <= number; i++) {
if (number % i == 0) {
count++; // i is a factor of the number

ool

return count;

Classes as modules

» module: A reusable piece of software, stored as a class.
— Example module classes: Math, Arrays, System
// This class is a module that contains useful methods

// related to factors and prime numbers.
public class Factors {

// Returns the number of factors of the given integer.

public static int countFactors(int number) {

int count = 0;
for (int i = 1; 1 <= number; 1i++) {
if (number % 1 == 0) {
count++; // i is a factor of the number

}
}

return count;

}

// Returns true if the given number is prime.
public static boolean isPrime (int number) {
return countFactors (number) ==

}

64

More about modules

e A module is a partial program, not a complete program.

— It does not have a main. You don't run it directly.
— Modules are meant to be utilized by other client classes.

e Syntax:

class . method (parameters) ;

e Example:
int factorsOf24 = Factors.countFactors(24);

65

Using a module

// This program sees whether some interesting numbers are prime.
public class Primes {

public static void main(String[] args) {
int[] nums = {1234517, 859501, 53, 142};
for (int 1 = 0; 1 < nums.length; i++) {

if (Factors.isPrime (nums[i])) {
System.out.println (numsf[i] +

is prime");

}

}

// This program prints all prime numbers up to a given maximum.
public class Primes2 {
public static void main (String[] args) {
Scanner console = new Scanner (System.in);
System.out.print ("Max number? ");
int max = console.nextInt ()
for (int 1 = 2; 1 <= max; i++) {
if (Factors.isPrime(i)) {
System.out.print (1 + " ");
} }
System.out.println();

66

Modules in Java libraries

// Java's built in Math class is a module
public class Math {
public static final double PI = 3.14159265358979323846;

public static int abs(int a) {
if (a >= 0) {
return a;
} else {
return -a;

}
}

public static double toDegrees (double radians) {
return radians * 180 / PI;

}

67

Static members

e static: Part of a class, rather than part of an object.
— Object classes can have static methods and fields.
— Not copied into each object; shared by all objects of that class.

class

state:
private static int staticFieldA
private static String staticFieldB

behavior:
public static void someStaticMethodC ()

public static void someStaticMethodD ()

object #1 object #2 object #3
state: state: state:
int field2 int fieldl int fieldl
double field?2 double field?2 double field?2
behavior: behavior: behavior:
public void method3 () public void method3 () public void method3 ()
public int method4 () public int method4 () public int method4 ()
public void methodb () public void methodb () public void methodb ()

68

Static fields

private static type name;
or,
private static type name = value;

— Example:

private static int theAnswer = 42;

e static field: Stored in the class instead of each object.
— A "shared" global field that all objects can access and modify.
— Like a class constant, except that its value can be changed.

69

Accessing static fields

e From inside the class where the field was declared:

fieldName // get the value
fieldName = value; // set the value

e From another class (if the field is public):

ClassName. fieldName // get the value
ClassName.fieldName = value; // set the value

— generally static fields are not public unless they are final

e Exercise: Modify the BankAccount class shown previously so
that each account is automatically given a unique ID.

o Exercise: Write the working version of FratGuy.

70

BankAccount solution

public class BankAccount {

// static count of how many accounts are created
// (only one count shared for the whole class)
private static int objectCount = 0;

// fields (replicated for each object)
private String name;
private int 1id;

public BankAccount () {
objectCount++; // advance the id, and

id = objectCount; // give number to account

public int getID() { // return this account's id
return 1d;

}

71

Static methods

// the same syntax you've already used for

methods

public static type name (parameters) ({
statements;

}

e static method: Stored in a class, not in an object.

— Shared by all objects of the class, not replicated.

— Does not have any implicit parameter, this;
therefore, cannot access any particular object's fields.

e Exercise: Make it so that clients can find out how many total
BankAccount objects have ever been created. .

BankAccount solution

public class BankAccount {
// static count of how many accounts are created
// (only one count shared for the whole class)
private static int objectCount = 0;

// clients can call this to find out # accounts created

public static int getNumAccounts () {
return objectCount;
}

// fields (replicated for each object)
private String name;
private int id;

public BankAccount () {
objectCount++; // advance the id, and
id = objectCount; // give number to account

}

public int getID() { // return this account's id
return id;

}

Summary of Java classes

e A class is used for any of the following in a large program:

— a program : Has a main and perhaps other static methods.
e example: GuessingGame, Birthday, MadLibs, CritterMain
e does not usually declare any static fields (except final)

— an object class : Defines a new type of objects.
e example: Point, BankAccount, Date, Critter, FratGuy
e declares object fields, constructor(s), and methods
* might declare static fields or methods, but these are less of a focus
e should be encapsulated (all fields and static fields private)

— a module : Utility code implemented as static methods.
e example: Math

74

