
Building Java Programs
Chapter 8

Classes

Copyright (c) Pearson 2013.
All rights reserved.

2

A programming problem
•  Given a file of cities' (x, y) coordinates,

which begins with the number of cities:

6
50 20
90 60
10 72
74 98
5 136
150 91

• Write a program to draw the cities on a DrawingPanel, then drop a
"bomb" that turns all cities red that are within a given radius:

Blast site x? 100
Blast site y? 100
Blast radius? 75
Kaboom!

3

A bad solution

Scanner input = new Scanner(new File("cities.txt"));
int cityCount = input.nextInt();
int[] xCoords = new int[cityCount];
int[] yCoords = new int[cityCount];

for (int i = 0; i < cityCount; i++) {
 xCoords[i] = input.nextInt(); // read each city
 yCoords[i] = input.nextInt();
}
...

–  parallel arrays: 2+ arrays with related data at same indexes.
• Considered poor style.

4

Observations
• The data in this problem is a set of points.
•  It would be better stored as Point objects.

–  A Point would store a city's x/y data.

–  We could compare distances between Points
to see whether the bomb hit a given city.

–  Each Point would know how to draw itself.

–  The overall program would be shorter and cleaner.

5

Clients of objects
•  client program: A program that uses objects.

–  Example: Bomb is a client of DrawingPanel and Graphics.

Bomb.java (client program)
public class Bomb {
 main(String[] args) {
 new DrawingPanel(...)
 new DrawingPanel(...)
 ...
 }
}

DrawingPanel.java (class)
public class DrawingPanel {
 ...
}

6

Classes and objects
•  class: A program entity that represents either:

 1. A program / module, or
 2. A template for a new type of objects.

– The DrawingPanel class is a template for creating
DrawingPanel objects.

• object: An entity that combines state and behavior.
– object-oriented programming (OOP): Programs that perform

their behavior as interactions between objects.

7

Blueprint analogy
iPod blueprint

state:
 current song
 volume
 battery life
behavior:
 power on/off
 change station/song
 change volume
 choose random song

iPod #1
state:
 song = "1,000,000 Miles"
 volume = 17
 battery life = 2.5 hrs
behavior:
 power on/off
 change station/song
 change volume
 choose random song

iPod #2
state:
 song = "Letting You"
 volume = 9
 battery life = 3.41 hrs
behavior:
 power on/off
 change station/song
 change volume
 choose random song

iPod #3
state:
 song = "Discipline"
 volume = 24
 battery life = 1.8 hrs
behavior:
 power on/off
 change station/song
 change volume
 choose random song

creates

8

Abstraction
• abstraction: A distancing between ideas and details.

–  We can use objects without knowing how they work.

•  abstraction in an iPod:
–  You understand its external behavior (buttons, screen).
–  You don't understand its inner details, and you don't need to.

9

Our task
•  In the following slides, we will implement a Point class as a

way of learning about defining classes.

–  We will define a type of objects named Point.
–  Each Point object will contain x/y data called fields.
–  Each Point object will contain behavior called methods.
–  Client programs will use the Point objects.

10

Point objects (desired)
 Point p1 = new Point(5, -2);
 Point p2 = new Point(); // origin, (0, 0)

• Data in each Point object:

• Methods in each Point object:
Method name Description

setLocation(x, y) sets the point's x and y to the given values

translate(dx, dy) adjusts the point's x and y by the given amounts

distance(p) how far away the point is from point p

draw(g) displays the point on a drawing panel

Field name Description

x the point's x-coordinate

y the point's y-coordinate

11

Point class as blueprint

–  The class (blueprint) will describe how to create objects.
–  Each object will contain its own data and methods.

Point class
state:
int x, y

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #1
state:
x = 5, y = -2

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #2
state:
x = -245, y = 1897

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #3
state:
x = 18, y = 42

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Object state: Fields

13

Point class, version 1
public class Point {
 int x;
 int y;
}

–  Save this code into a file named Point.java.

• The above code creates a new type named Point.
–  Each Point object contains two pieces of data:

• an int named x, and
• an int named y.

–  Point objects do not contain any behavior (yet).

14

Fields
•  field: A variable inside an object that is part of its state.

–  Each object has its own copy of each field.

• Declaration syntax:

 type name;

–  Example:

 public class Student {
 String name; // each Student object has a
 double gpa; // name and gpa field
 }

15

Accessing fields
•  Other classes can access/modify an object's fields.

–  access: variable.field

– modify: variable.field = value;

•  Example:

Point p1 = new Point();
Point p2 = new Point();
System.out.println("the x-coord is " + p1.x); // access
p2.y = 13; // modify

16

A class and its client
• Point.java is not, by itself, a runnable program.

–  A class can be used by client programs.

PointMain.java (client program)
public class PointMain {
 main(String args) {
 Point p1 = new Point();
 p1.x = 7;
 p1.y = 2;

 Point p2 = new Point();
 p2.x = 4;
 p2.y = 3;
 ...
 }
}

Point.java (class of objects)
public class Point {
 int x;
 int y;
}

x 7 y 2

x 4 y 3

17

PointMain client example
public class PointMain {
 public static void main(String[] args) {
 // create two Point objects
 Point p1 = new Point();
 p1.y = 2;
 Point p2 = new Point();
 p2.x = 4;

 System.out.println(p1.x + ", " + p1.y); // 0, 2

 // move p2 and then print it
 p2.x += 2;
 p2.y++;
 System.out.println(p2.x + ", " + p2.y); // 6, 1
 }
}

•  Exercise: Modify the Bomb program to use Point objects.

18

Arrays of objects
• null : A value that does not refer to any object.

–  The elements of an array of objects are initialized to null.

 String[] words = new String[5];
 DrawingPanel[] windows = new DrawingPanel[3];

index 0 1 2 3 4

value null null null null null

index 0 1 2

value null null null

words

windows

19

Things you can do w/ null
•  store null in a variable or an array element

String s = null;
words[2] = null;

•  print a null reference
System.out.println(s); // null

•  ask whether a variable or array element is null
if (words[2] == null) { ...

•  pass null as a parameter to a method
System.out.println(null); // null

•  return null from a method (often to indicate failure)
return null;

20

Null pointer exception
• dereference: To access data or methods of an object with the

dot notation, such as s.length() .
–  It is illegal to dereference null (causes an exception).

–  null is not any object, so it has no methods or data.

 String[] words = new String[5];
 System.out.println("word is: " + words[0]);
 words[0] = words[0].toUpperCase(); // ERROR

 Output:
 word is: null
 Exception in thread "main"
java.lang.NullPointerException

 at Example.main(Example.java:8)

index 0 1 2 3 4
value null null null null null

21

Looking before you leap
• You can check for null before calling an object's methods.

String[] words = new String[5];
words[0] = "hello";
words[2] = "goodbye"; // words[1], [3], [4] are null

for (int i = 0; i < words.length; i++) {
 if (words[i] != null) {
 words[i] = words[i].toUpperCase();
 }
}

index 0 1 2 3 4

value "HELLO" null "GOODBYE" null null
words

22

Two-phase initialization
1) initialize the array itself (each element is initially null)
2) initialize each element of the array to be a new object

 String[] words = new String[4]; // phase 1
 for (int i = 0; i < words.length; i++) {
 coords[i] = "word" + i; // phase 2
 }

index 0 1 2 3

value "word0" "word1" "word2" "word3"
words

23

Bomb answer 1
import java.awt.*;
import java.io.*;
import java.util.*;

// Displays a set of cities and simulates dropping a "bomb" on them.
public class Bomb {
 public static void main(String[] args) throws FileNotFoundException {
 DrawingPanel panel = new DrawingPanel(200, 200);
 Graphics g = panel.getGraphics();

 Scanner input = new Scanner(new File("cities.txt"));
 Point[] cities = readCities(input, g);

 // drop the "bomb"
 Scanner console = new Scanner(System.in);
 Point bomb = new Point();
 System.out.print("Blast site x? ");
 bomb.x = console.nextInt();
 System.out.print("Blast site y? ");
 bomb.y = console.nextInt();
 System.out.print("Blast radius? ");
 int radius = console.nextInt();
 boom(bomb, radius, cities, g);
 }
 ...

24

Bomb answer 2
 // Reads input file of cities and returns them as array of Points.
 public static Point[] readCities(Scanner input, Graphics g) {
 int numCities = input.nextInt(); // first line = # of cities
 Point[] cities = new Point[numCities];
 for (int i = 0; i < cities.length; i++) {
 cities[i] = new Point();
 cities[i].x = input.nextInt(); // read city x/y from file
 cities[i].y = input.nextInt();
 g.fillOval(cities[i].x, cities[i].y, 3, 3);
 g.drawString("(" + cities[i].x + ", " + cities[i].y + ")",
 cities[i].x, cities[i].y);
 }
 return cities;
 }

 // Simulates dropping a bomb at the given location on the given cities.
 public static void boom(Point bomb, int radius, Point[] cities, Graphics g) {
 g.setColor(Color.RED);
 g.drawOval(bomb.x - radius, bomb.y - radius, 2 * radius, 2 * radius);
 for (int i = 0; i < cities.length; i++) {
 int dx = cities[i].x - bomb.x;
 int dy = cities[i].y - bomb.y;
 double distance = Math.sqrt(dx * dx + dy * dy);
 if (distance <= radius) {
 g.fillOval(cities[i].x, cities[i].y, 3, 3);
 g.drawString("(" + cities[i].x + ", " + cities[i].y + ")",
 cities[i].x, cities[i].y);
 }
 }
 System.out.println("Kaboom!");
 }
}

Object behavior: Methods

26

Client code redundancy
• Our client program wants to draw Point objects:

// draw each city
g.fillOval(cities[i].x, cities[i].y, 3, 3);
g.drawString("(" + cities[i].x + ", " + cities[i].y + ")",
 cities[i].x, cities[i].y);

• To draw them in other places, the code must be repeated.
–  We can remove this redundancy using a method.

27

Eliminating redundancy, v1
• We can eliminate the redundancy with a static method:

// Draws the given point on the DrawingPanel.
public static void draw(Point p, Graphics g) {
 g.fillOval(p.x, p.y, 3, 3);
 g.drawString("(" + p.x + ", " + p.y + ")", p.x, p.y);
}

• main would call the method as follows:

// draw each city
draw(cities[i], g);

28

Problem with static method

• We are missing a major benefit of objects: code reuse.
–  Every program that draws Points would need a draw method.

• The syntax doesn't match how we're used to using objects.

 draw(cities[i], g); // static (bad)

• The point of classes is to combine state and behavior.
–  The draw behavior is closely related to a Point's data.

–  The method belongs inside each Point object.

 cities[i].draw(g); // inside object (better)

29

Instance methods
•  instance method (or object method): Exists inside each

object of a class and gives behavior to each object.

 public type name(parameters) {
 statements;
 }

–  same syntax as static methods, but without static keyword

 Example:

 public void shout() {
 System.out.println("HELLO THERE!");
 }

30

Instance method example
public class Point {
 int x;
 int y;

 // Draws this Point object with the given pen.
 public void draw(Graphics g) {
 ...
 }
}

–  The draw method no longer has a Point p parameter.
–  How will the method know which point to draw?

• How will the method access that point's x/y data?

31

•  Each Point object has its own copy of the draw method, which
operates on that object's state:

Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;

p1.draw(g);
p2.draw(g);

public void draw(Graphics g) {
 // this code can see p1's x and y
}

Point objects w/ method

x 7 y 2

x 4 y 3

public void draw(Graphics g) {
 // this code can see p2's x and y
}

p2

p1

32

The implicit parameter
•  implicit parameter:

The object on which an instance method is called.

–  During the call p1.draw(g);
the object referred to by p1 is the implicit parameter.

–  During the call p2.draw(g);
the object referred to by p2 is the implicit parameter.

–  The instance method can refer to that object's fields.
• We say that it executes in the context of a particular object.

• draw can refer to the x and y of the object it was called on.

33

Point class, version 2
public class Point {
 int x;
 int y;

 // Changes the location of this Point object.
 public void draw(Graphics g) {
 g.fillOval(x, y, 3, 3);
 g.drawString("(" + x + ", " + y + ")", x, y);
 }
}

–  Each Point object contains a draw method that draws that point
at its current x/y position.

34

Kinds of methods
• accessor: A method that lets clients examine object state.

–  Examples: distance, distanceFromOrigin
–  often has a non-void return type

• mutator: A method that modifies an object's state.
–  Examples: setLocation, translate

35

Mutator method questions
• Write a method setLocation that changes a Point's

location to the (x, y) values passed.

• Write a method translate that changes a Point's location
by a given dx, dy amount.

–  Modify the Point and client code to use these methods.

36

Mutator method answers
public void setLocation(int newX, int newY) {
 x = newX;
 y = newY;
}

public void translate(int dx, int dy) {
 x = x + dx;
 y = y + dy;
}

// alternative solution that utilizes setLocation
public void translate(int dx, int dy) {
 setLocation(x + dx, y + dy);
}

37

Accessor method questions
• Write a method distance that computes the distance

between a Point and another Point parameter.

 Use the formula:

• Write a method distanceFromOrigin that returns the
distance between a Point and the origin, (0, 0).

–  Modify the client code to use these methods.

() ()212
2

12 yyxx −+−

38

Accessor method answers
public double distance(Point other) {
 int dx = x - other.x;
 int dy = y - other.y;
 return Math.sqrt(dx * dx + dy * dy);
}

public double distanceFromOrigin() {
 return Math.sqrt(x * x + y * y);
}

// alternative solution that uses distance
public double distanceFromOrigin() {
 Point origin = new Point();
 return distance(origin);
}

39

Printing objects
• By default, Java doesn't know how to print objects:

Point p = new Point();
p.x = 10;
p.y = 7;
System.out.println("p is " + p); // p is Point@9e8c34

// better, but cumbersome; p is (10, 7)
System.out.println("p is (" + p.x + ", " + p.y + ")");

// desired behavior
System.out.println("p is " + p); // p is (10, 7)

40

The toString method
tells Java how to convert an object into a String

 Point p1 = new Point(7, 2);
 System.out.println("p1: " + p1);

 // the above code is really calling the following:
 System.out.println("p1: " + p1.toString());

• Every class has a toString, even if it isn't in your code.
–  Default: class's name @ object's memory address (base 16)

 Point@9e8c34

41

toString syntax
 public String toString() {
 code that returns a String representing this object;
 }

–  Method name, return, and parameters must match exactly.

–  Example:

 // Returns a String representing this Point.
 public String toString() {
 return "(" + x + ", " + y + ")";
 }

Object initialization:
constructors

43

Initializing objects
• Currently it takes 3 lines to create a Point and initialize it:

Point p = new Point();
p.x = 3;
p.y = 8; // tedious

• We'd rather specify the fields' initial values at the start:

Point p = new Point(3, 8); // better!

–  We are able to this with most types of objects in Java.

44

Constructors

•  constructor: Initializes the state of new objects.

 public type(parameters) {
 statements;
 }

–  runs when the client uses the new keyword

–  no return type is specified;
it implicitly "returns" the new object being created

–  If a class has no constructor, Java gives it a default constructor
with no parameters that sets all fields to 0.

45

Constructor example

public class Point {
 int x;
 int y;

 // Constructs a Point at the given x/y location.
 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

 public void translate(int dx, int dy) {
 x = x + dx;
 y = y + dy;
 }

 ...
}

46

Tracing a constructor call
• What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
}

public void translate(int dx, int dy) {
 x += dx;
 y += dy;
}

x y p1

47

Client code, version 3
public class PointMain3 {
 public static void main(String[] args) {
 // create two Point objects
 Point p1 = new Point(5, 2);
 Point p2 = new Point(4, 3);

 // print each point
 System.out.println("p1: (" + p1.x + ", " + p1.y + ")");
 System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

 // move p2 and then print it again
 p2.translate(2, 4);
 System.out.println("p2: (" + p2.x + ", " + p2.y + ")");
 }
}

OUTPUT:
p1: (5, 2)
p2: (4, 3)
p2: (6, 7)

48

Multiple constructors
• A class can have multiple constructors.

–  Each one must accept a unique set of parameters.

• Exercise: Write a Point constructor with no parameters that
initializes the point to (0, 0).

// Constructs a new point at (0, 0).
public Point() {
 x = 0;
 y = 0;
}

49

Common constructor bugs
1. Re-declaring fields as local variables ("shadowing"):

 public Point(int initialX, int initialY) {
 int x = initialX;
 int y = initialY;
 }

–  This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain 0.

2. Accidentally giving the constructor a return type:

 public void Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

–  This is actually not a constructor, but a method named Point

Encapsulation

51

Encapsulation
• encapsulation: Hiding implementation details from clients.

–  Encapsulation forces abstraction.
• separates external view (behavior) from internal view (state)
• protects the integrity of an object's data

52

Private fields
A field that cannot be accessed from outside the class

 private type name;

–  Examples:

 private int id;
 private String name;

• Client code won't compile if it accesses private fields:

PointMain.java:11: x has private access in Point
System.out.println(p1.x);
 ^

53

Accessing private state
 // A "read-only" access to the x field ("accessor")
 public int getX() {
 return x;
 }

 // Allows clients to change the x field ("mutator")
 public void setX(int newX) {
 x = newX;
 }

–  Client code will look more like this:

 System.out.println(p1.getX());
 p1.setX(14);

54

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {
 private int x;
 private int y;

 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

 public int getX() {
 return x;
 }

 public int getY() {
 return y;
 }

 public double distanceFromOrigin() {
 return Math.sqrt(x * x + y * y);
 }

 public void setLocation(int newX, int newY) {
 x = newX;
 y = newY;
 }

 public void translate(int dx, int dy) {
 setLocation(x + dx, y + dy);
 }
}

55

Benefits of encapsulation
• Abstraction between object and clients

•  Protects object from unwanted access
–  Example: Can't fraudulently increase an Account's balance.

• Can change the class implementation later
–  Example: Point could be rewritten in polar

coordinates (r, θ) with the same methods.

• Can constrain objects' state (invariants)
–  Example: Only allow Accounts with non-negative balance.
–  Example: Only allow Dates with a month from 1-12.

56

The this keyword
• this : Refers to the implicit parameter inside your class.

 (a variable that stores the object on which a method is called)

–  Refer to a field: this.field

–  Call a method: this.method(parameters);

– One constructor this(parameters);
can call another:

57

Variable shadowing
•  shadowing: 2 variables with same name in same scope.

–  Normally illegal, except when one variable is a field.

 public class Point {
 private int x;
 private int y;

 ...

 // this is legal
 public void setLocation(int x, int y) {
 ...
 }

–  In most of the class, x and y refer to the fields.
–  In setLocation, x and y refer to the method's parameters.

58

Fixing shadowing
 public class Point {
 private int x;
 private int y;

 ...

 public void setLocation(int x, int y) {
 this.x = x;
 this.y = y;
 }
 }

•  Inside setLocation,
– To refer to the data field x, say this.x
– To refer to the parameter x, say x

59

Calling another constructor
 public class Point {
 private int x;
 private int y;

 public Point() {
 this(0, 0); // calls (x, y) constructor
 }

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 ...
 }

• Avoids redundancy between constructors
• Only a constructor (not a method) can call another constructor

Static methods/fields

61

Multi-class systems
• Most large software systems consist of many classes.

–  One main class runs and calls methods of the others.

• Advantages:
–  code reuse
–  splits up the program logic into manageable chunks

Main Class #1
main

method1

method2

Class #2
method3

method5

Class #3
method4

method6

62

Redundant program 1
// This program sees whether some interesting numbers are prime.

public class Primes1 {
 public static void main(String[] args) {
 int[] nums = {1234517, 859501, 53, 142};
 for (int i = 0; i < nums.length; i++) {
 if (isPrime(nums[i])) {
 System.out.println(nums[i] + " is prime");
 }
 }
 }

 // Returns the number of factors of the given integer.
 public static int countFactors(int number) {
 int count = 0;
 for (int i = 1; i <= number; i++) {
 if (number % i == 0) {
 count++; // i is a factor of the number
 }
 }
 return count;
 }

 // Returns true if the given number is prime.
 public static boolean isPrime(int number) {
 return countFactors(number) == 2;
 }
}

63

Redundant program 2
// This program prints all prime numbers up to a maximum.
public class Primes2 {
 public static void main(String[] args) {
 Scanner console = new Scanner(System.in);
 System.out.print("Max number? ");
 int max = console.nextInt();
 for (int i = 2; i <= max; i++) {
 if (isPrime(i)) {
 System.out.print(i + " ");
 } }
 System.out.println();
 }

 // Returns true if the given number is prime.
 public static boolean isPrime(int number) {
 return countFactors(number) == 2;
 }

 // Returns the number of factors of the given integer.
 public static int countFactors(int number) {
 int count = 0;
 for (int i = 1; i <= number; i++) {
 if (number % i == 0) {
 count++; // i is a factor of the number
 } }
 return count;
 }
}

64

Classes as modules
• module: A reusable piece of software, stored as a class.

–  Example module classes: Math, Arrays, System

// This class is a module that contains useful methods
// related to factors and prime numbers.
public class Factors {
 // Returns the number of factors of the given integer.
 public static int countFactors(int number) {
 int count = 0;
 for (int i = 1; i <= number; i++) {
 if (number % i == 0) {
 count++; // i is a factor of the number
 }
 }

 return count;
 }

 // Returns true if the given number is prime.
 public static boolean isPrime(int number) {
 return countFactors(number) == 2;
 }
}

65

More about modules
• A module is a partial program, not a complete program.

–  It does not have a main. You don't run it directly.
–  Modules are meant to be utilized by other client classes.

• Syntax:

 class.method(parameters);

• Example:

 int factorsOf24 = Factors.countFactors(24);

66

Using a module
// This program sees whether some interesting numbers are prime.

public class Primes {
 public static void main(String[] args) {
 int[] nums = {1234517, 859501, 53, 142};
 for (int i = 0; i < nums.length; i++) {
 if (Factors.isPrime(nums[i])) {
 System.out.println(nums[i] + " is prime");
 }
 }
 }
}

// This program prints all prime numbers up to a given maximum.
public class Primes2 {
 public static void main(String[] args) {
 Scanner console = new Scanner(System.in);
 System.out.print("Max number? ");
 int max = console.nextInt();
 for (int i = 2; i <= max; i++) {
 if (Factors.isPrime(i)) {
 System.out.print(i + " ");
 } }
 System.out.println();
 }
}

67

Modules in Java libraries
// Java's built in Math class is a module
public class Math {
 public static final double PI = 3.14159265358979323846;

 ...

 public static int abs(int a) {
 if (a >= 0) {
 return a;
 } else {
 return -a;
 }
 }

 public static double toDegrees(double radians) {
 return radians * 180 / PI;
 }
}

68

Static members
•  static: Part of a class, rather than part of an object.

–  Object classes can have static methods and fields.
–  Not copied into each object; shared by all objects of that class.

class
state:
private static int staticFieldA
private static String staticFieldB
behavior:
public static void someStaticMethodC()
public static void someStaticMethodD()

object #1
state:
int field2
double field2

behavior:
public void method3()
public int method4()
public void method5()

object #2
state:
int field1
double field2

behavior:
public void method3()
public int method4()
public void method5()

object #3
state:
int field1
double field2

behavior:
public void method3()
public int method4()
public void method5()

69

Static fields
 private static type name;
 or,
 private static type name = value;

–  Example:
 private static int theAnswer = 42;

•  static field: Stored in the class instead of each object.
–  A "shared" global field that all objects can access and modify.
–  Like a class constant, except that its value can be changed.

70

Accessing static fields
•  From inside the class where the field was declared:

 fieldName // get the value
 fieldName = value; // set the value

•  From another class (if the field is public):

 ClassName.fieldName // get the value
 ClassName.fieldName = value; // set the value

–  generally static fields are not public unless they are final

• Exercise: Modify the BankAccount class shown previously so
that each account is automatically given a unique ID.

• Exercise: Write the working version of FratGuy.

71

BankAccount solution
public class BankAccount {

 // static count of how many accounts are created
 // (only one count shared for the whole class)
 private static int objectCount = 0;

 // fields (replicated for each object)
 private String name;
 private int id;

 public BankAccount() {
 objectCount++; // advance the id, and
 id = objectCount; // give number to account
 }

 ...

 public int getID() { // return this account's id
 return id;
 }
}

72

Static methods
 // the same syntax you've already used for
methods

 public static type name(parameters) {
 statements;
 }

•  static method: Stored in a class, not in an object.

–  Shared by all objects of the class, not replicated.

–  Does not have any implicit parameter, this;
therefore, cannot access any particular object's fields.

• Exercise: Make it so that clients can find out how many total
BankAccount objects have ever been created.

73

BankAccount solution
public class BankAccount {

 // static count of how many accounts are created
 // (only one count shared for the whole class)
 private static int objectCount = 0;

 // clients can call this to find out # accounts created
 public static int getNumAccounts() {
 return objectCount;
 }

 // fields (replicated for each object)
 private String name;
 private int id;

 public BankAccount() {
 objectCount++; // advance the id, and
 id = objectCount; // give number to account
 }

 ...

 public int getID() { // return this account's id
 return id;
 }
}

74

Summary of Java classes
• A class is used for any of the following in a large program:

–  a program : Has a main and perhaps other static methods.
• example: GuessingGame, Birthday, MadLibs, CritterMain
• does not usually declare any static fields (except final)

–  an object class : Defines a new type of objects.
• example: Point, BankAccount, Date, Critter, FratGuy
• declares object fields, constructor(s), and methods
• might declare static fields or methods, but these are less of a focus
• should be encapsulated (all fields and static fields private)

–  a module : Utility code implemented as static methods.
• example: Math

