“Modern Systems Analysis
and Design
Seventh Edition

Jeffrey A. Hoffer

Joey F. George
Joseph S. Valacich

Chapter 1

The Systems Development
Environment

-
Introduction

Information Systems Analysis and Design
O0Complex organizational process

O Used to develop and maintain computer-
based information systems

O0Used by a team of business and systems
professionals

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

"p—

Introduction (Cont.)

Methodologies

FIGURE 1-1 An organizational approach to systems analysis and
design is driven by methodologies, techniques, and tools

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

-~
Introduction (Cont.)

Application Software

O0Computer software designed to support
organizational functions or processes

Systems Analyst

O0Organizational role most responsible for
analysis and design of information systems

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

-
A Modern Approach to Systems

Analysis and Design

1950s: focus on efficient automation of
existing processes

1960s: advent of procedural third
generation languages (3GL) faster and
more reliable computers

1970s: system development becomes
more like an engineering discipline

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

-
A Modern Approach to Systems

Analysis and Design (Cont.)

1980s: major breakthrough with 4GL,
CASE tools, object-oriented methods

1990s: focus on system integration, GUI
applications, client/server platforms,

Internet

The new century: Web application
development, wireless PDAs and smart

phones, component-based applications,
application service providers (ASP)

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

-
Developing Information Systems

System Development Methodology is a
standard process followed in an
organization to conduct all the steps
necessary to analyze, design, implement,
and maintain information systems.

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

-
Systems Development Life

Cycle (SDLC)

Traditional methodology used to develop,
maintain, and replace information systems

Phases in SDLC:

O Planning

O Analysis

0 Design

O Implementation
0 Maintenance

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

-~
Standard and Evolutionary Views of

SDLC

Implementation

Go/No Go Axis

\ \

/ ; \
| 3 |
\ \ / v‘
\ = 2= o ',
§ /
B | / Maintenance

\
|
/ |
|

J

|

f

/

/

—

P -

Planning

-

o

o

FIGURE 1-2 FIGURE 1-3 Evolutionary model

Systems development life cycle

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall 9

-
Systems Development Life Cycle

(SDLC) (Cont.)

Planning — an organization’ s total
information system needs are identified,
analyzed, prioritized, and arranged

Analysis — system requirements are
studied and structured

Design — a description of the
recommended solution is converted into
logical and then physical system
specifications

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

10

-
Systems Development Life Cycle

(SDLC) (Cont.)

Logical design — all functional features of
the system chosen for development in
analysis are described independently of
any computer platform

Physical design — the logical
specifications of the system from logical
design are transformed into the
technology-specific details from which all
programming and system construction can
be accomplished

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall 11

-
Systems Development Life Cycle

(SDLC) (Cont.)

Implementation — the information system
IS coded, tested, installed and supported In
the organization

Maintenance — an information system is
systematically repaired and improved

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall 12

—

TABLE 1-1 Products of SDLC Phases

Phase Products, Outputs, or Deliverables
Planning Priorities for systems and projects; an architecture for data, networks,
and selection hardware, and information systems management are the
result of associated systems
Detailed steps, or work plan, for project
Specification of system scope and planning and high-level system
requirements or features
Assignment of team members and other resources
System justification or business case
Analysis Description of current system and where problems or opportunities are
with a general recommendation on how to fix, enhance, or replace
current system
Explanation of alternative systems and justification for chosen alternative
Design Functional, detailed specifications of all system elements (data, processes,

Implementation
Maintenance

inputs, and outputs)

Technical, detailed specifications of all system elements (programs, files,
network, system software, efc.)

Acquisition plan for new technology
Code, documentation, training procedures, and support capabilities

New versions or releases of software with associated updates to
documentation, training, and support

Chapter 1

Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall 13

=

The Heart of the Systems Development Process

FIGURE 1-8 FIGURE 1-9
Analysis—design—code-test loop The heart of systems development

/ " \ / o

Maintenance

Analysis

Test Design

\ / |mp|ememation — DeSign
Code

Current practice combines analysis, design, and implementation
into a single iterative and parallel process of activities.

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

-~
Traditional Waterfall SDLC

Planning _\

Analysis
_\ One phase begins
i when another
Design —w completes, with
' ‘ little backtracking
Physical and looping.
Design 'W
FIGURE 1-10 Implementation
Traditional waterfall SDLC 1)

Maintenance

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall 15

-
Problems with Waterfall Approach

Feedback ignored, milestones lock in
design specs even when conditions
change

Limited user involvement (only in
requirements phase)

Too much focus on milestone deadlines of
SDLC phases to the detriment of sound
development practices

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall 16

-~
Different Approaches to Improving

Development

CASE Tools

Rapid Application Development
(RAD)

Agile Methodologies
eXtreme Programming

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

17

-
Computer-Aided Software

Engineering (CASE) Tools

Diagramming tools enable graphical
representation.

Computer displays and report generators
help prototype how systems “look and
feel”.

IBM’ s Rational products are the best
known CASE tools.

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

18

-
Computer-Aided Software

Engineering (CASE) Tools (Cont.)

Analysis tools automatically check for
consistency in diagrams, forms, and
reports.

A central repository provides integrated
storage of diagrams, reports, and project
management specifications.

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

19

-
Computer-Aided Software

Engineering (CASE) Tools (Cont.)

Documentation generators standardize
technical and user documentation.

Code generators enable automatic
generation of programs and database
code directly from design documents,
diagrams, forms, and reports.

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall 20

"
CASE Tools (Cont.)

Ble Edt Vew Create Arange Generation Crtique Tooks Help

" BREBDe BB EL MQ

' Package-centric E‘\qag »>vovey—9' B TrEBE R
Order By Type, Name

@] Profile Configuration
= shapesmodel

&= Jshapes class diagram

m Use Case Diagram 1
\;J -T unattachedCollaboration

Shape

+newOperation() : void ‘

g |
OneDimensional TwoDimensional FIGU RE 1 -1 1

+getlength() : double +getivea() : double Screen ShOt Of
e ArgoUML, an open

b source CASE tool

«creater +Polygon() : void I

e '-?!', | | (Source: hitp://
i | As Diagrar

ey Mot (o — : _ : argouml.tigris.org/)

,,,,, sentation Source || Constraints || Stereotype || Taggedvalues | Checkiist |
mlms

4 ToDo Item [Properties L Documentation
[Add Instance Yar

[Add Instance Yar
+~[Add Instance Var
4 Add Operations t
(9 Add Constructor

@ [:j Low
R

[<Iff <]

-~

9 (Unnamed Generalization)
,,,,,, ? {Unnamed Generalization)

‘f (Unnamed Generalization)
....... ? {Unnamed Generalization)
he» create

Polygon

[<]]

E} Polygon has multiple base classes, but Java does not support
a ultiple inheritance. You must use interfaces instead.
Cz

(I

m

This change is required before you can generate Java code.

To address this, use the "Next>" button, or manually (1)

< Back Finish
[| osedeen ot |

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

(<]

-

CASE Tools (Cont.)

TABLE 1-2 Examples of CASE Usage within the SDLC

SDLC Phase

Key Activities

CASE Tool Usage

Project identification
and selection

Project initiation and
planning

Analysis
Logical and physical
design

Implementation

Maintenance

Display and structure high-level
organizational information

Develop project scope and
feasibility

Determine and structure system
requirements

Create new system designs

Translate designs into an
information system

Evolve information system

Diagramming and matrix fools o create and structure information
Repository and documentafion generators to develop project plans
Diagramming to create process, logic, and data models

Form and report generators to prototype designs; analysis and documentation
generators fo define specifications

Code generators and analysis, form and report generators to develop system;
documentation generators fo develop system and user documentation

All tools are used (repeat life cycle)

Chapter 1

Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall 22

‘
Rapid Application Development

(RAD)

Decreases design and implementation
time

Involves: extensive user involvement,
prototyping, integrated CASE tools, code
generators

More focus on user interface and system
function, less on detailed business
analysis and system performance

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall 23

‘
Rapid Application Development

(RAD) (Cont.)

Requirements
Planning

FIGURE 1-12

‘ | RAD life cycle
User Design ﬂ

\&” Construction
> Cutover

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

-
Agile Methodologies

Motivated by recognition of software
development as fluid, unpredictable, and

dynamic
Three key principles

OO0 Adaptive rather than predictive

O Emphasize people rather than roles
O Self-adaptive processes

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

25

TABLE 1-3 The Agile Manifesto

The Manifesto for Agile Software Development
Seventeen anarchists agree:

We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

* Individuals and interactions over processes and tools.
» Working software over comprehensive documentation.
 Customer collaboration over contract negotiation.

* Responding to change over following a plan.

The Agile
Methodologies group
argues that software
development
methodologies
adapted from
engineering generally
do not fit with real-
world software
development.

That is, while we value the items on the right, we value the items on the left more.
We follow the following principles:

* Our highest priority is fo satisfy the customer through early and continuous delivery of valuable
software.

* Welcome changing requirements, even late in development. Agile processes harness change
for the customer’s competitive advantage.

* Deliver working software frequently, from a couple of weeks to a couple of months, with a pref-
erence fo the shorter timescale.

* Businesspeople and developers work together daily throughout the project.

* Build projects around motivated individuals. Give them the environment and support they need,
and frust them to get the job done.

* The most efficient and effective method of conveying information to and within a development
team is face-fo-face conversation.

* Working software is the primary measure of progress.

* Continuous attention to technical excellence and good design enhances agility.

* Agile processes promote sustainable development. The sponsors, developers, and users should
be able to maintain a constant pace indefinitely.

* Simplicity—the art of maximizing the amount of work not done —is essential.

* The best architectures, requirements, and designs emerge from self-organizing teams.

* At regular infervals, the team reflects on how to become more effective, then tunes and adijusts
its behavior accordingly.

—Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin
Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick,
Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas (www
.agileAlliance.org)

(Source: htip://agilemanifesto.org/ © 2001, the above authors this declaration may be freely
copied in any form, but only in its entirety through this notice.)

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall 26

‘
When to use Agile Methodologies

If your project involves:
OUnpredictable or dynamic requirements
[1Responsible and motivated developers

0 Customers who understand the process and
will get involved

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall 27

—

TABLE 1-4 Five Critical Factors That Distinguish Agile and Traditional Approaches -

to Systems Development

Factor Agile Methods Traditional Methods

Size Well matched to small products and Methods evolved to handle large
teams. Reliance on tacit knowledge products and teams. Hard to tailor
limits scalability. down to small projects.

Criticality =~ Untested on safety-critical products. Methods evolved to handle highly
Potential difficulties with simple critical products. Hard to tailor down
design and lack of documentation. to products that are not critical.

Dynamism Simple design and continuous Detailed plans and Big Design Up Front,
refactoring are excellent for highly excellent for highly stable environment
dynamic environments but a source but a source of expensive rework for
of potentially expensive rework for highly dynamic environments.
highly stable environments.

Personnel Requires continuous presence of a Needs a critical mass of scarce experts
critical mass of scarce experts. during project definition but can work
Risky to use no-agile people. with fewer later in the project, unless

the environment is highly dynamic.

Culture Thrives in a culture where people feel Thrives in a culture where people feel

comfortable and empowered by
having many degrees of freedom
(thriving on chaos).

comfortable and empowered by
having their roles defined by clear
practices and procedures (thriving on
order).

(Source: Boehm, Barry; Turner, Richard, Balancing Agility and Discipline: A Guide for the
Perplexed, 1st Ed., (c)2004. Reprinted and electronically reproduced by permission of Pearson
Education, Inc. Upper Saddle River, New Jersey.

Chapter 1

Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

28

-
eXtreme Programming

Short, incremental development cycles
Automated tests

Two-person programming teams
Coding, testing, listening, designing

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

29

-
eXtreme Programming (Cont.)

Coding and testing operate together

Advantages:
O Communication between developers
OHigh level of productivity
OHigh-quality code

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

30

-
Object-Oriented Analysis and

Design (OOAD)

Based on objects rather than data or
processes

Object: a structure encapsulating
attributes and behaviors of a real-
world entity

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall 31

-
Object-Oriented Analysis and

Design (OOAD) (Cont.)

Object class: a logical grouping of
objects sharing the same attributes
and behaviors

Inheritance: hierarchical
arrangement of classes enable
subclasses to inherit properties of
superclasses

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

32

-
Rational Unified Process (RUP)

An object-oriented systems development
methodology

Establishes four phase of development:

iInception, elaboration, construction, and
transition

OEach phase is organized into a number of
separate iterations.

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall 33

sEIviIC

Resource FIGURE 1-13
Phases of OOSAD-based development
Inception Elaboration Construction Transition
>

Chapter 1

Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall

Time

34

-
Our Approach to Systems

Development

The SDLC is an organizing and guiding
principle in this book.

We may construct artificial boundaries or
artificially separate activities and
processes for learning purposes.

Our intent is to help you understand all the
pieces and how to assemble them.

Chapter 1 Copyright © 2014 Pearson Education, Inc. Publishing as Prentice Hall 35

This work is protected by United States copyright laws and is provided solely
for the use of instructors in teaching their courses and assessing student
learning. Dissemination or sale of any part of this work (including on the
World Wide Web) will destroy the integrity of the work and is not permit-
ted. The work and materials from it should never be made available to
students except by instructors using the accompanying text in their
classes. All recipients of this work are expected to abide by these

restrictions and to honor the intended pedagogical purposes and the needs of
other instructors who rely on these materials.

Copyright © 2014 Pearson Education, Inc.
Publishing as Prentice Hall

